Parallel Algorithms for the Edge-Coloring and Edge-Coloring Update Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Algorithms for the Edge-Coloring and Edge-Coloring Update Problems

with D 1 1 colors for the edge-coloring problem. However, Holyer has shown that deciding whether a graph requires D or D 1 1 colors is NP-complete [10]. For a multigraph G, Shannon showed that x9(G) # 3D/2 [16]. A number of parallel algorithms exist for the edge-coloring problem. Lev et al. [14] presented parallel edge-coloring algorithms with D colors for bipartite multigraphs. When D 5 2, the...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

From Edge-Coloring to Strong Edge-Coloring

In this paper we study a generalization of both proper edge-coloring and strong edge-coloring: k-intersection edge-coloring, introduced by Muthu, Narayanan and Subramanian [18]. In this coloring, the set S(v) of colors used by edges incident to a vertex v does not intersect S(u) on more than k colors when u and v are adjacent. We provide some sharp upper and lower bounds for χk-int for several ...

متن کامل

Edge-coloring series-parallel multigraphs

We give a simpler proof of Seymour’s Theorem on edge-coloring series-parallel multigraphs and derive a linear-time algorithm to check whether a given series-parallel multigraph can be colored with a given number of colors.

متن کامل

Very fast parallel algorithms for approximate edge coloring

This paper presents very fast parallel algorithms for approximate edge coloring. Let log n= log n; log n = log(log(k−1) n), and log∗(n) = min{k | log n¡ 1}. It is shown that a graph with n vertices and m edges can be edge colored with (2dlog1=4 log∗(n)e)c · (d =log log∗(n)e)2 colors in O(log log∗(n)) time using O(m+ n) processors on the EREW PRAM, where is the maximum vertex degree of the graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Parallel and Distributed Computing

سال: 1996

ISSN: 0743-7315

DOI: 10.1006/jpdc.1996.0005